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A theoretical model for the spreading of viscous gravity currents over a rigid 
horizontal surface is derived, based on a lubrication theory approximation. The 
complete family of self-similar solutions of the governing equations is investigated by 
means of a phase-plane formalism developed in analogy to that of gas dynamics. The 
currents are represented by integral curves in the plane of two phase variables, 2 and 
V ,  which are related to the depth and the average horizontal velocity of the fluid. 
Each integral curve corresponds to a certain self-similar viscous gravity current 
satisfying a particular set of initial and/or boundary conditions, and is obtained by 
solving a first-order ordinary differential equation of the form dV/dZ =f(Z, V ) ,  
where f is a rational function. All conceivable self-similar currents can thus be 
obtained. A detailed analysis of the properties of the integral curves is presented, and 
asymptotic formulae describing the behaviour of the physical quantities near the 
singularities of the phase plane corresponding to sources, sinks, and current fronts 
are given. The derivation of self-similar solutions from the formalism is illustrated by 
several examples which include, in addition to the similarity flows studied by other 
authors, many other novel ones such as the extension to viscous flows of the classical 
problem of the breaking of a dam, the flows over plates with borders, as well as 
others. A self-similar solution of the second kind describing the axisymmetric 
collapse of a current towards the origin is obtained. The scaling laws for these flows 
are derived. Steady flows and progressive wave solutions are also studied and their 
connection to self-similar flows is discussed. The mathematical analogy between 
viscous gravity currents and other physical phenomena such as nonlinear heat 
conduction, nonlinear diffusion, and ground water motion is commented on. 

1. Introduction 
Viscous gravity currents occur in many situations of interest in geophysics, 

industrial engineering, geology, and environmental sciences (see Huppert 1986, for a 
geophysically oriented review, also Kerr & Lister 1987; Simpson 1982; and Hoult 
1972). The main feature of these currents is that flow is primarily horizontal and is 
governed by a balance between gravity and viscous forces, inertia effects being 
negligible (creeping flow). We refer to the work of Huppert (1982) for a discussion of 
the conditions for which the viscous forces overwhelm inertial forces, so that the 
latter can be ignored. Usually, except perhaps at the beginning of the phenomenon, 
the length of the current greatly exceeds its thickness, and this justifies the use of the 
approximation of lubrication theory (Huppert 1982). The equations of this model 
admit a family of similarity solutions, which represent the asymptotics of a broad 
class of flows corresponding to a variety of initial and/or boundary value problems. 

6 FLM 210 



156 J .  Grutton and F .  Minotti 

Self-similar viscous gravity currents have been studied theoretically by Huppert 
(1982). He considered plane and axisymmetric currents on a rigid horizontal surface 
produced by a source whose flux depends on time according to a power law and 
obtained the solutions by numerical integration of a second-order differential 
equation (only exceptional cases admit analytic solutions). Experiments have been 
carried out by Britter (1979), Didden & Maxworthy (1982), Huppert (1982), and 
Maxworthy (1983). 

Similarity solutions describing other types of gravity currents have been studied 
in connection with the spread of oil on the surface of the ocean in a viscosity- 
dominated regime by Fay (1969) and by Hoult (1972) using a different approach. The 
similarity viscous spread of subducted lithospheric material along the mid-mantle 
boundary has been considered by Kerr & Lister (1987). Gravity currents in the 
inertia-dominated regime have been investigated by Grundy & Rottman (1985, 
1986). 

These flows are only a small part of the family of similarity solutions of the 
governing equations. Many other instances of self-similar viscous gravity currents 
can be conceived, as will be shown here. To mention just a few examples in this 
introduction, the flow produced in plane geometry by the removal of a wall that 
separates two pools of fluid of different depth is self-similar (as in the analogous 
classical problem of the breaking of a dam), also the flow produced by a source that 
discharges fluid into a pool having initially a uniform depth is self-similar in axial 
symmetry if the flux of the source is constant in time, and in plane geometry if the 
flux varies as the -$ power of time. Other instances of flows over plates of finite 
extent are also self-similar, and will be discussed in this paper. 

The theoretical interest of a systematic investigation of the similarity solutions of 
the governing equations of viscous gravity currents is further enhanced by the fact 
that the mathematics involved is essentially equivalent to that of several other 
physical phenomena also governed by nonlinear parabolic equations (see Seshadri & 
Na 1985), such as nonlinear diffusion and nonlinear heat conduction (transport of 
heat by radiation in multiply or fully ionized gases, electron heat conduction in 
plasmas, etc.); the latter deals with strong thermal waves such as may occur in 
explosions, and in laser-plasma interaction. We can also quote the equations of the 
Dupuit-Forchheimer idealization for the flow of ground water, the so-called porous 
media equation (see for example Peletier 1981), and the theory of electric 
transmission in cables coated with resistive paints that exhibit nonlinear charac- 
teristics, as additional examples of models having a mathematical structure 
equivalent to that we are considering in this paper (Bear 1972; Boyer 1962; also 
Seshadri & Na 1985). Many results concerning viscous gravity currents can then be 
applied, mutatis mutundis, to these problems. I n  this connection it can be observed 
that the similarity solutions for nonlinear diffusion derived by Pattle (1959), and the 
self-similar solutions of the nonlinear heat conduction equation given by Barenblatt 
(1979), Tappert (1977) and Barenblatt & Zel’dovich (1972) are equivalent to  some 
self-similar viscous gravity currents discussed by Huppert ( 1982). Among the vast 
literature concerning similarity solutions for nonlinear parabolic equations analogous 
to that considered here we can also mention the papers of Pert (1977), Grundy (1979) 
and Smyth & Hill (1988), among others. 

The primary aim of this paper is to develop a comprehensive theory of viscous 
gravity currents on a rigid horizontal surface which allows one to obtain 
systematically the complete family of self-similar solutions of the governing 
equations of the model. To this end we use a phase-plane formalism analogous to that 
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FIGURE 1. Geometry of the problem. 

developed by Sedov (1959) and Courant & Friedrichs (1948) for gas dynamics (see 
also Zel’dovich & Raizer 1967). By means of this technique the problem is reduced 
to the integration of an autonomous first-order differential equation whose solutions 
are certain integral curves in the phase-plane. The integral curves represent the 
actual flow, whose description in terms of the physical variables requires an 
additional quadrature. Using this method, we derive many new self-similar solutions 
that describe currents corresponding to  various boundary or initial conditions. The 
fI ows studied by Huppert (1982) are contained in our theory. The behaviour of the 
integral curves in the phase-plane is described and their asymptotic properties near 
the singularities is analysed. In  addition we investigate steady currents and 
progressive waves, as these flows are closely related to the self-similar currents. A 
more detailed study of some solutions that represent especially interesting flows, and 
the analysis of their stability is left for a forthcoming paper. 

2. Basic equations and formalism 
The governing equations of slow viscous gravity flows on a rigid horizontal surface 

are obtained assuming that the motion is essentially horizontal, so the pressure is 
purely hydrostatic (ap/az = --pg), inertia effects are negligible, and that the length 
of the current is much larger than its depth (Buckmaster 1977, see also Huppert 
1982). For alternative derivations and extensions see Smith (1969) and Nakaya 
(1974). Figure 1 illustrates the geometry of the problem. Let x denote the horizontal 
coordinate (Cartesian in the case of unidirectional flow, or radial if the flow is 
axisymmetric), z the vertical coordinate and t the time. The acceleration of gravity 
will be denoted by g ,  and v is the kinematic viscosity. If h(x, t )  denotes the thickness 
of the current, the boundary conditions of no slip at the bottom and no tangential 
stress a t  the upper free surface require that the horizontal velocity v, depend on z as 

3vz 
2h2 

v, = -(2h-z), 

where ~ ( x ,  t )  = $W.,(Z = h) is the average horizontal velocity. One then obtains: 

a4 
ax A2--+u = 0, 

ad a vA 
-+-(vA)+n- = 0. 
at ax 2 

(3) 
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Here n = 0 , l  according to whether the flow is unidirectional (plane symmetry) or 
axisymmetric. I n  (2) and (3) we have introduced a new dependent variable A defined 
as 

A = (g/3~)5h, (4) 

to take advantage of the fact that the dimensional parameter q / v  appears in the 
problem only through this combination. 

So far, nothing has been said about the boundaries of the horizontal supporting 
surface, or plate. This can be infinite, or may be limited by walls, or by borders over 
which the liquid may spill; the walls and the borders may be located at  fixed 
positions or may be movable. These and other boundary or initial conditions will be 
considered as appropriate when discussing specific currents. 

It can be observed that a viscous gravity current of a heavy fluid whose density 
is pz = p that intrudes in a lighter ambient fluid whose density is p1 = p-p' is 
equivalent to the flow of a single fluid with a free upper surface, such as we are 
considering, provided one replaces g by g' = gp'/p (see Huppert 1982). Then, the 
results of this paper may be carried over to this case, with the appropriate 
substitutions. 

Using (2) to eliminate v in (3) one obtains a second-order differential equation for 
A of the general form 

(5) - = x-n- a ( x n p -  it), 
where rn is some number (m = 3 in the present case). An equivalent equation was 
used by Huppert (1982) as the starting point of his analysis. We shall follow a 
different procedure, and retain both dependent variables, v and 1, to  introduce the 
phase-plane formalism. 

We notice in passing that (5 )  can be regarded as a nonlinear heat conduction 
equation if one interprets h as the temperature 9 and if the heat conductivity A is a 
power function of 9 of the form h = provided one identifies (g/3v)f with 
(AJc)''" ( G  = heat capacity). Here m = for transport of thermal energy by 
radiation in a completely ionized gas, m = 4.5-5.5 for multiply ionized gases, and 
m = %for electron heat conduction in aplasma (Boyer 1962). A similar equivalence can 
be also established with respect to the equations of nonlinear diffusion, the 
Dupuit-Forchheimer equations [m = 11, and the nonlinear electric transmission. 
Other physical situations giving rise to similar equations are mentioned by Peletier 
(1981) and Lacey, Ockendon & Tayler (1982) where additional references can be 
found. 

Since the governing equations (2), (3) do not contain any constant dimensional 
parameter and involve only quantities having the dimensions of length [L],  time [!Fj 
or combinations of both, A and v can be expressed as 

at ax 

R = (x2t-%)i, v = xt-lV, (6) 

where 2 and V are, in general, dimensionless functions of x, t and the constant 
parameters of the problem, which arise from the initial conditions and the boundary 
conditions. Substituting in (2) and (3) one obtains 

(7) 
az 
ax ~ - + 2 2 + 3 V = 0 ,  
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If the boundary or initial conditions involve two (or more) constant parameters 
with independent dimensions, it will be always possible to find two combinations e 
and t of them such that [el = L ,  [t] = T .  Then Z and V will in general depend on two 
dimensionless variables x / e ,  t / t  (and also on some dimensionless constant parameters 
nl, n2,. . . if there are more than two constant governing parameters), so that the 
problem will not be self-similar. 

Let us assume now that the problem involves only one parameter b with 
independent dimensions. Clearly it can be assumed without loss of generality that 

[b] = LT-8, (9) 

where S is a numerical constant. Then there will be a single dimensionless 
combination of x, t and b, which we can take as 

6 = x/bt8. (10) 

In this case the motion is self-similar, [ being the similarity variable, and Z = Z([), 
V = V([ ) .  

For self-similar flows the phase variables Z and V satisfy the following ordinary 
differential equations : 

@’+22+3V = 0, (11)  

(12) 3[2V - [ Z ( S  - V )  + (5 + 3n) VZ - Z = 0, 

where the prime denotes the derivative with respect to 6. 
Eliminating [ from (11) and (12) one obtains after a little algebra 

and 

dV 2(2S- l )+3(1+n)  VZ+3(S-V) V 
-= 
dZ 32(22+3V) 

1 

I n  the case of nonlinear heat conduction, an analogous derivation leads to:  

dV 2(2S- l )+m(n+l )2V+m(S-V)V  d 1 
(15) 

9 = (cx2Z/h0 t)l’m, $3 = c9xV/t, (16) 

- - z- mZ(2Z+mV) d z ( l n l ~ l )  =-2Z+mV7’ 

in place of (13) and (14), where 

with q denoting the heat flow; in this case n = 0 , 1 , 2  for plane, cylindrical and 
spherical geometry, respectively. 

The solution of a self-similar problem is thus essentially reduced to the integration 
(numerical, in general) of the autonomous first-order ordinary differential equation 
(13). Once V ( 2 )  is known, (14) can be integrated to obtain [(Z) ; inversion then allows 
to obtain Z([) and V([ ) .  

The (2, V)-plane will be called the ‘phase plane’, according to common usage. A 
solution of (13) is represented by a curve in the phase plane, which is called an 
‘integral curve ’. A single integral curve passes through any regular point of the phase 
plane. Any integral curve represents a self-similar flow of a certain sort. The solution 
of a given self-similar problem characterized by some particular boundary conditions 
is represented in the phase plane by one or more pieces of the appropriate integral 
curve (or curves) and must satisfy a t  its ends the boundary conditions. Each piece 
represents the flow in a certain domain of the independent variables. If the required 
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solution is represented by more than a single piece, the flows corresponding to the 
individual pieces must be adequately matched a t  the common boundary of their 
respective domains, as will be shown when discussing the examples. i n  order to 
determine which integral curve corresponds to  the problem a t  hand (i.e. to the given 
initial and boundary conditions) it is necessary to know the behaviour of the 
solutions in the neighbourhood of the singular points of (13). The whole (2, V)-plane 
needs to be considered, and according to (6) solutions having Z > 0 correspond to 
t > 0: while solutions for which Z < 0 are meaningful for t < 0. 

3. Investigation of the integral lines in the phase plane 
The relevant results of this section are summarized in tables 1 and 2 for easy 

reference. 
Let us discuss in detail the properties of the integral curves near the singular points 

of (13). I n  this Section we shall denote by K and K the integration constants that 
arise from (13) and (14), respectively, or from their approximations near the 
singularities ; we shall also omit the absolute value bars around [ as no confusion can 
arise. Six singular points of (13) can be recognized and will be examined in turn. 

(i)  Point 0 (2, = O,Vo = O ) .  Except for the special case 6 =  0, which will be 
considered separately, 0 represents points at infinity of the fluid ([= 00) .  The 
behaviour of the integral curves near 0 is different in the half-planes 2 > 0 and 
Z < 0. For Z > 0, 0 is a node: as 0 is approached all integral curves (except Z = 0, 
which is of no interest) converge to a curve given by 

z+ ... . 1 26- 1 (5+3n)6-4  vv-- 
36 

For Z < 0, 0 is a saddle : only a single curve, given near 0 by (17) arrives a t  0. In 
either case the following asymptotic formulae hold [a + 0 , 3  for the curves that reach 
0 :  

z = K[-1/6, (18) 

h = ( K ' v / g ) l / 3 ( ( b / 3 ) ' / 3 6 ~ ( z ~ - l ) / 3 6  , (19) 

We notice that h and v do not depend on t as x-t co. 
When 6 = $ and 2 > 0 the integral curves are given near 0 by 

V = Kexp ( -  1/42), (21) 

and one has the asymptotic formulae : 

Z = Kc-', h = (3b2Kv/g)4, v = (Kx/t) exp ( - C / W ) .  (22) 

For 2 < 0 only the curve corresponding to the trivial solution V = 0 arrives a t  0. 

the trivial solution Z = 0, 
Finally, in the case 6 = 0, the point 0 is a saddle. Near 0 one has, in addition to 

V = & ( I & z - L g ) t .  (23) 

V = & (-22/15);, (24) 

Only the curve corresponding to K = 0 in (23), given by 
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passes through 0. Moving along this curve, 0 represents a fixed front (we call 'front ' 
a place where the thickness h of the fluid vanishes), located a t  finite distance from the 
origin of the coordinates. For n = 0 (plane symmetry) (24) is an exact analytic 
solution of (13). Its  properties will be discussed later on. 

(ii) Point A [Z, = 0, V, = S] is a saddle. If 6 = 0, A coalesces with 0, then only 
1.3 + 0 needs to be considered. Two integral curves pass through A .  One is 2 = 0,  and 
the other, which we denote by d, is given approximately by 

(5+3n)S- 1 
12s 

2. V = S +  

The point A represents the advancing front of a gravity viscous current. We 
denote the front coordinate by xf (=  Cf bt', Cf = const.) and introduce the notation 
7 = x/xf = </&. Then, near zf, 

Z = 36(1-7), (26) 

and 

For Z > 0, the curves a2 represent the currents produced by sources whose flux 
depends on time according to power laws (see Huppert 1982, and Didden & 
Maxworthy 1982). Analytic formulae for curves of type d can be obtained for n = 
0,S = i, when d is given by V = 6, and for n = 1,  S = Q, when the curve is V = Q; these 
correspond to the plane and axisymmetric spreading of a fixed volume of fluid, and 
yield the solutions first obtained by Pattle (1959) and later by Smith (1969), Nakaya 
(1974) and again by Lopez, Miller & Ruckenstein (1976). I n  addition, there are also 
exact analytic solutions of (13) for n = 0, in the cases 6 = 1 and 6 = Q. In the first case 
d is given by 

This curve represents a current whose profile moves with constant velocity, without 
changing its shape. For the case n = 0, S = Q the trajectory given by (25) is an exact 
solution for any Z and represents a current that is drained from the origin and that 
has a front moving away. It is analogous to  the so-called dipole-type solutions first 
obtained by Barenblatt (1954) and Barenblatt & Zel'dovich (1957) (see Zel'dovich & 
Raizer 1967) in the context of nonlinear heat conduction and the porous media 
equation. Both cases will be discussed in detail later on. 

(iii) Point B (2, = -3/2(5+3n), V, = 1/(5+3n)) is a node for S < 6- and for 
S >, S,, where S, = 13/10f(6/5)$ if n = 0, and 6, = I f  1/3/2 if n = 1.  With the 
notation Z* = Z-Z,, V* = V -  V,, the approximate formula for the integral curves 
in the neighbourhood of B is 

z = 3V(V- 1).  (29) 

(V*-y+Z*)Y(V*-y-Z*) = K ,  (30) 

7, = A( 1 + 3n,) - k ( S 1  A )  (5 + 3n), (31) 

Y = ( A  + r)/M -0, (32) 

d = [(S-S,)(S-S-)]~, r= S-(13+3n)/2(5+3n). (33) 

Near B one has z*c+~Y, = K .  (341 

with 
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Since 2+3y, is positive for S < 6- and negative for 6 > S,, in the first case B 
corresponds to 5 = 00, and in the second case to 5 = 0. The asymptotic behaviour of 
h and v near B is given by (t  < 0) 

For S- < 6 < So and So < 6 < S,, with So =%for n = 0 and So = 1 for n = 1 ,  B is a 
focus: the integral curves spiral endlessly towards B counterclockwise as 5 tends to 
infinity in the first case (stable spiral), and away from B as 5 increases starting from 
zero a t  R in the second case (unstable spiral). Near B, when B is a focus, the phase 
variables V and Z have an oscillatory behaviour that, as is easily verified, the 
physical variables v and h do not exhibit. 

As can be appreciated from table 2, when 6 is greater than a critical value 8, 
[S, = 1 for n = 0, and 6, = 0.762.. . for n = 1 (as will be shown in $7.7)], the integral 
curve arriving a t  the point 0 originally circles around B. For any n, 6, < So; then, in 
the interval S, < S < So, when B represents 6 = 00 (as the point 0 does for any 6 > 0),  
the trajectory arriving a t  0 and those arriving a t  B must originate in some limiting 
trajectory called a 'limit cycle'. When S, < S < So, B is a stable spiral and the 
existence of a t  least one limit cycle can be proved by virtue of the Poincark-Bendixon 
theorem. Numerical evidence suggests that in this case the limit cycle is unique and 
that when S > So there is no limiting trajectory (see Lacey et aE. 1982). For S --f So the 
limit cycle tends to B, which for S = So is a centre in the linear approximation. For 
S+ S, the limit cycle approaches curve A + 0 and the segment OA of the Z = 0 axis. 

In  addition, 2 = Z,,  V = V, is also an exact solution of (11)) (12) for any n and 8, 
so that (35), (36) is an exact solution of (2), (3). This special solution (represented in 
the phase plane by a single point) describes a current with a fixed front a t  x = 0, like 
(24). When 8- < 6 < So, the oscillatory behaviour of the phase variables near B 
indicates that, as time grows from minus infinity, more and more parcels of the fluid 
whose flow is described by them, approach the profile of the flow corresponding to the 
singular point B. A detailed analysis of the solutions that represent fixed fronts will 
be given later on. 

(iv) Point C (2, = 0, V, = 00) is a node. Near C the integral curves are given by 
ZiV = K.  Here C represents a point of the fluid a t  a finite distance xf (=  Cp bts, 
cp = const.) from the origin. The following asymptotic formulae are valid near C 
(7 = X/Xf = 5/5f) 

2 = (4K)i(l-& (37) 

2, = &- - t % / (  1 -?,)-a. "( 3 4 K  )i (39) 

As C is approached (a+ l ) ,  h+O, v+00 and (27rx)"hv is finite. This behaviour 
describes the flow near a border of the aupporting plate, where the liquid speeds up 
before falling over, and will be further discussed later on. 
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(v) Point D (2, = 00, V, = ( 1  -26)/3(1 +n)) is a saddle. In its neighbourhood the 
integral curves are given by 

Here V* = V -  V,. Only the curve V* = yo 2-' reaches D from points in the finite 
(2, V)-plane. Moving along this curve, D represents the origin [x = 01 and the following 
asymptotic formulae hold : 

z = K 5 - 2 ,  (41) 

h = (3Kb2~/g)&2"-')/3, v = - [(26-- 1)/3( 1 + n)] z/t, (42) 

which represent gravity spreading with no mass inflow at the origin. 

Nearby, (12) can be approximated by 
(vi) Point E (2, = CO, V, = 00) is a saddle-node. It represents the origin (x = 0). 

y =  2 - 1 ,  W =  V-1 
dY Y(2W+3Y) 
dW- W[(l+n)W-YJ' 
-- (43) 

In  the case n = 0, integration of (43) yields 

w3Y-4(Y+;W)5 = K .  (44) 

Besides the solutions W = 0 and Y = 0, which are of no interest, one obtains from (44) 
the following asymptotic formulae for the integral curves arriving at E :  

v = - g  ( K = O ) ,  (45) 

and V = f 4-gK-kJ (K 0). (46) 

From (45) and (46) it  can be seen that all the curves that arrive a t  E in the second 
and fourth quadrants of the (2,V)-plane have, for large 2, slopes intermediate 
between (45) and the V = 0 axis. For the curve (45) the following asymptotic 
formulae are obtained : 

2 = KC-:, (47) 

This solution represents a current with outflow a t  the origin. On the other hand the 
curves (46) lead to 

2 = KC-2, (50) 

These solutions describe currents with inflow or outflow a t  the origin according to the 
+ or - sign in (52).  

In the case n = 1, integration of (43) gives 

Yw3 exp (2W/Y) = K. (53) 

From (53) it can be seen that the integral curves that reach E are given 
approximately by 

I' = Z/ln (Z2), (54) 
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V 

FIGURE 2. The family of integral curves for n = 0,8 = 0. Arrows indicate the direction of increasing 
151. The curve 9 represents a current whose front is fixed. The curves 9, 6, 8', and 2 represent 
the drainage of a liquid off a supporting plate of finite extent. 

describing a current with inflow a t  the origin. No integral curves in the second and 
fourth quadrants can arrive a t  E. 

Some families of integral curves are shown in figures 2-5 for the case n = 0 and in 
figures 6 , 7  for n = 1. The curves have been obtained by numerical integration of (13). 
In  these graphs we have denoted by 9 the curve going to the singular point D ;  the 
other curves going to infinity arrive either at C or at E .  

In table 1 we give a summary of singular points, their properties, the asymptotic 
behaviour of the solutions, and the corresponding physical interpretation. 

A complete list of the various types of trajectories connecting pairs of singular 
points is given in table 2, where short descriptions of the currents they represent are 
also given. 

It is now convenient to make a brief digression in order to discuss the validity of 
the solutions that represent currents with sharply defined fronts. Some solutions 
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FIGURE 3. The family of integral curves for n = 0,6 = ?. Arrows indicate the direction of increasing 
151. The curve d represents the current produced by a source located at x = 0. The pair d,d’ 
represents the current produced by the removal of a wall that separates a semiinfinite pool of liquid 
from a initially empty domain. The pair 1,1’ represents the current produced by the removal of 
a wall that separates two semiinfinite pools of different depth. The curve W represents the current 
produced when a wall located at the border of the supporting plate, and containing a pool of liquid, 
is removed allowing the fluid to fall over. 

having this property are those represented by the integral curve d (equations 
(25)-(28)) and by the integral curve passing through C (equations (37)-(39)) ; also the 
fixed-front solutions (35), (36), as well as others that will be derived in the following 
sections share this characteristic. In all these cases, the lubrication theory 
approximation predicts profiles of the form h x Xu, with 

X = z - z l  and O < u < l  

(u = for the curve d,  u = a for the curve through C, (T = Q for the fixed-front 
solutions). Surely these profiles are incorrect near the front, where the basic 
assumptions of our model are grossly violated. Nevertheless, by using them it is 
possible to obtain solutions of the governing equations without invoking further 
assumptions at  the front. Furthermore, the results of the experiments (see Huppert 
1982 ; Didden & Maxworthy 1982 ; Maxworthy 1983 ; also Britter 1979) indicate that 
the theory predicts successfully the overall shape and dynamics of the currents. The 
matter has been discussed at  length in the paper of Huppert; his result is that the 
conditions at the front of the current play no role in determining its motion or shape 
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FIGURE 4. The family of integral curves for n = 0,  S = 6. Arrows indicate the direction of increasing 
ICI. The curve d represents the current produced by a source a t  the origin. The piece of the curve 
Y between E and the moving point S( t )  represents a steady flow from a constant source a t  2 = z8 
to a border of the supporting plate at x = 0. 

in the large. These investigations were limited to the currents represented by the 
curve d ;  however, it certainly looks reasonable on these grounds to expect that also 
in the other cases the model will describe correctly the general shape and dynamics 
of the currents, regardless of the fact that the vertical fronts are certainly unrealistic. 
In  general one should expect that  wherever the profile predicted by the model 
becomes appreciably steep i t  will differ markedly from the real one. In  order to 
estimate the size .% of the region near the front where the theory is certainly 
incorrect, we may take (somewhat arbitrarily) the condition (dh/dX),,, = 1 as a 
criterion of steepness. This gives 9? x ah. For profiles that are appreciably steep only 
very close to the front, such as those we are considering, 9? is certainly a very small 
fraction of the total length of the current, except perhaps a t  the beginning of the 
phenomenon. 

The case of solutions yepresenting axisymmetric flows from a source a t  the origin 
of coordinates (corresponding to the integral curves arriving at  E ,  and whose 
asymptotic behaviour is given by (55)-(57)) is similar. In  this case as z+O, h 
diverges, v tends to  zero and the flux (2nxhv) tends to a finite value. Here also the 
model fails where the profile of the current becomes very steep. However, excepting 
a small region near the origin, the lubrication theory approximation gives predictions 
in good agreement with the experiments (Huppert 1982). 
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V 

FIQURE 5. The family of integral curves for 72 = 0,6 = 1. Arrows indicate the direction of increasing 
14. The curve d represents the current produced by a source at the origin. It also represents a 
progressive wave solution, such as the current produced by a piston that is pushing a constant 
volume of fluid. 

4. The special case n = 0, 6 = 0 
This case belongs to plane symmetry and occurs when 6 has the dimensions of 

length [b  = t, c = x/t]. It deserves a separate analysis because, for this choice of n 
and 6, the general integral of (1 1) and (12) can be found analytically. To this end let 
us perform the substitution Z ( g )  = W([) [ -2 .  One then obtains from (11) 

and from (12) (59) 

A first integral of (59) can be obtained in terms of the function @(W) defined by 

whose integral is 
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FIGURE 6. The family of integral curves for n = 1,s = 0. Arrows indicate the direction of increasing 
1;. The curve 9 represents the drainage of a fluid that is allowed to fall over the border of a circular 
plate. The curve 8 represents the drainage off an annular plate, when there is a wall at  the inner 
border. The curve 8' represents the drainage of a circular tank that has a hole a t  its centre. The 
curve iW represents a current over a circular plate, produced by a source at the origin. The curve 
f represents a current whose front is fixed. 

where the integration constant has been set equal to zero. Using (60) and (61), (59) 

d4, 24, can be written as 
(62) -- dW - 1 -~ 

3W' 
which yields on integration 

@ = SW-l&W-%. 5 (63) 
It can be easily verified that if K = 0 one obtains from (63) the analytic solution 

(24). When K 4 0, introducing (63) in (61) and integrating again we obtain 

where w = (6/5K)i$ and K(l -w5) 2 0. The integral in (64) must be computed 
numerically. Then w(g) can be found by inversion, and one finally obtains the desired 
solutions in the form 

h = (&&)' (3~~2/gt)44Jw(!3, (65) 

w = -$(gK)-f(t'/t) [K(1 - w ~ ) ] ~ w - ~ .  (66) 
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FIGURE 7. The family of integral curves for n = 1 ,s  = 4. Arrows indicate the direction of increasing 
g. The curve .QZ represents a current produced by a source at the origin. The curve Y describes the 
current produced by a constant source at the origin, that is discharging fluid into a preexisting pool. 

These solutions describe the drainage of a viscous fluid that is allowed to spill over 
the borders of the supporting plate, and will be discussed in more detail in $7. It can 
be observed that h cc t-f and 

(67 1 h~ = -$(3~e~/gt*)@qi -w5)]i. 

As the position of the border (w = 0) is approached, h + O ,  v + co but hv is finite. 

5. Progressive waves 

that they admit solutions of the progressive wave type : 
The basic equations (2) and (3) are translationally invariant in the case n = 0, so 

A = A(&),  v = w(.!J, 5 = ct--2, (68) 

with c = const. In the present case, of course, c does not depend on the properties of 
the fluid, but is a parameter determined by the boundary conditions, for example a 
piston moving at  a constant speed, and may therefore assume any value. 

As is well known there is a close connection between self-similar solutions and 
progressive values (see for example Barenblatt & Zel’dovich 1972 ; also Barenblatt 
1979). Actually, progressive waves are themselves self-similar, the similarity variable 
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Behaviour of the 
physical variables 

Nature Interpretation h -  

6=0: 

S*O: 
node 

saddle 

saddle- 6 + 4: z = 00, mass x x  

x = xf: fixed front 

flow 
6 = 4: x = co, no 
flow 

constant 

Saddle x - td, moving front t y  1 -- 
2a- ' (  :)" 

0 < 6 < 6-: node 6 < 6,: z = co, mass (-:) 
6, ,< 6: node 

inflow 

point 
6 > 6: z = 0, fixed 

6- < 6 < 6,: focus 

Node x - td, moving sink tv 1 -- ( 3 
Saddle z = 0,  no mass t- 

inflow 

inflow or outflow t r  

I 06-4 

Saddle-node n = 0 : x = 0, mass &?( V x $2) 

t+'Iln<If = 1 : z = 0, mass 
inflow only 

TABLE 1. List of the singular points of the phase plane, their position and nature, the corresponding 
physical interpretation, and the behaviour of the physical variables in their neighbourhood. 6, = 
%,a, = 8 5 (!)$for n = 0, and 6, = 1,6, = 1 f 2/ 3/2 for n = 1 .  xf indicates the position of a front ; C 
denotes a constant. For more details see $3. 

being A = ,u/rc(,u = exp (-x/L'), 7 = exp ( - t / t ) ,  with I!, t being two governing 
parameters with dimensions of length and time, respectively, and L' = c t ] ,  and can be 
obtained from the general formalism of $2 by means of a limiting process, such as 
that described by Sedov (1959). It is then appropriate to discuss briefly these 
solutions. 

Substituting (68) in (2) and (3) one obtains, denoting with primes the derivatives 
with respect to 6 

2, = A%', (69) 

and (A3A')'-cA' = 0, (70)  

R3A'-cR = K .  (71)  

which can be integrated a t  once giving 

The same result could also have been obtained starting from the formalism of $2 by 
means of the above-mentioned limiting process. 

The solution corresponding to K = 0 is 

IA = [ ( g v c / g )  (6-60)~i ,  v =  c ,  to = const. (72) 
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Curve Exists for: 

(a ) t  < 0 

O-tB  S = O  

A + B  O<S<S, 

A + O  S=S, 

A - t C  S>S, 

B+O & > S o  

B+C S>S, 

LC+B S,<S<S, 

LC-+O 8, < 6 < S o  

LC+C S,<S<S, 
C + O  g<s<s ,  

C-tC a>; 
C + B  S<S, 

D - t B  S<!j 

D - t C  S > i  

E+O 
E+B on lyn=O 

E - t C  a n y 8  
( b )  t > 0 

C+A a < $  
D + A  S = 1  5+3n 

E - t A  6 2 (n = 0) 
S > i ( n = l )  

c+o S + O  
D-20 S>& 
E - 2 0  S2& 

D+C S > &  
E+C a n y 6  

a<; 

C + G  a < &  

Comments 

Fixed front [$7.6] 
Converging front with influx at  infinity, blows up for 

Converging front with influx at  infinity. Self-similar 

Converging front with a sink a t  finite distance, vanishes 

Waiting front with influx from infinity [$7.6] 
Waiting front, sink at  finite distance [$7.6] 
Waiting front with influx from infinity [$7.6] 
Waiting front with influx from infinity [$7.6] 

Waiting front, sink at  finite distance [$7.6] 
Influx from infinity to a sink 
Influx from infinity to a sink 
Current on a plate limited by two sinks 
Influx from infinity. Current extend to the origin 
Current from origin to a sink at  finite distance 
Flux from origin to infinity 
Flux from origin to infinity 

t + O  [$7.7] 

solution of the second kind for n = 1 [$7.7] 

for t - t O  [$7.7] 

Flux from origin to a sink a t  finite distance 

Flow towards a sink and expanding over the supporting plate 
Spreading of a constant volume of fluid [$7.1] 
Current produced by a power-law source at  the 

Inflow or outflow a t  infinity, sink at finite distance 
Inflow or outflow at infinity, current extends to the origin 
Flow from infinity to the origin or vice versa [$$7.2, 7.51 
Current on a plate limited by two sinks [$7.3] 
Current to a sink at  finite distance [$7.3] 
Flux from the origin to a sink at finite distance [$7.3] 

origin [$$7.1, 7.2,  7.41 

TABLE 2. List of the different types of integral trajectories classified according to the singular 
points they connect. Trivial integral curves are omitted. Column 1 identifies the trajectory. The 
arrow indicates the direction of increasing 151. LC denotes the limit cycle. Each line exists only for 
the values of intervals of S indicated in Column 2 (So = 3, 8, = 1 for n = 0, and 8, = 1 ,  8, = 
0 .762 . .  .for n = 1). Column 3 contains short comments on the type of current ; the numbers in 
brackets indicate the paragraph(s) where the corresponding solutions are discussed 

It represents a current that advances with constant speed c on an infinite plate 
without changing its profile, and whose front is located at x = ct - &. This current 
describes the flow produced by a plane piston (or a spatula) that is advancing at  a 
constant speed, pushing a constant volume of fluid in front of it. It can be easily 
checked that this solution can also be derived from the formalism of $3, and that 
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H 

H 
I 

FIGURE 8. Profiles of the progressive wave solutions: (a) the current produces by a piston pushing 
a layer of fluid of constant depth. ( 6 )  The current produced when a liquid is falling over a border 
t h a t  is receding a t  a constant speed. ( c )  The current produced when a liquid is pushed towards a 
border that is advancing a t  a constant speed. 

it belongs to thc n = 0, 6 =  1 family, being described by the integral curve 

Analytic solutions can also be obtained from (71) in the case K + 0. Let us consider 
d [ Z  = 371(11- l)]. 

first K < 0. We put 
K = -&,, A = H ( 4 )  A,, $ = &/A:, 

then (71 )  is transformed into 
d$ H3 - 
dH H-1'  

(73 )  

(74) 

Two cases can be considered: (a )  H 3 1, ( b )  0 < H < 1. I n  case (a )  integration of (74) 
yields 

where the integration constant has been chosen such that H ( 4  = 0) = 2 .  The profile 
given by (75)  is shown in figure 8(a) .  It represents a gravity current whose profile 
does not change with time and that advances with constant velocity c ; the thickness 
of the fluid tends to  h, = (3v/g)fA, at great distances in front of the current and 
increases as Izlf far behind. There is no sharply defined front, but the point given by 
$ = 0 [where h = 2h,] can be conventionally taken as the position of the 'front ', The 
average velocity of the fluid in this current tends to zero ahead, and approaches the 
constant value c far behind the advancing 'front'. This solution describes the 
asymptotics of the current produced by a piston that is pushing a layer of fluid of 

9 = g(H - l ) '++(H-  1)'+ 3 ( H -  1) +In ( H -  l)--Y, (75 )  
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thickness h,, when a sufficiently long time has elapsed from the beginning of the 
motion, and the front of the perturbation has advanced to a very great distance from 
the piston. 

In case (b )  one obtains 

q5 = -f( 1 - H ) 3 + 3  1 --H)*-3(1 - H )  + In (1 - H )  ++> (76) 

where the integration constant has been chosen such that H(q5 = 0) = 0. The profile 
(76) is represented in figure 8 ( b ) .  This current has a well-defined front at  q5 = 0;  
behind this front (to the right, in the figure) there is no fluid at all. Ahead of the front, 
the thickness of the fluid layer tends rapidly to h,. The average flow velocity is 
opposite to that of the profile ( = c) ,  it vanishes rapidly as h --f h,, and tends to infinity 
as the front is approached. Near the front one has, approximately, 

q5 = -[$H 4 + 2 H 5 + . . . ] .  (77) 

This solution represents a viscous liquid flowing towards, and over a moving border 
of the supporting plate. Such a current occurs if a fluid layer of uniform thickness h, 
is initially a t  rest, and at  a certain moment the supporting plate begins to be 
gradually destroyed, so that its border recedes at a constant speed, letting the fluid 
spill over it. 

Let us consider the case K > 0. We change the definition of A, setting K = cA, in 
(71) and obtain 

dq5 H3 
cW--H+l '  

Integration of (78) gives 

q5 = f( 1 + - $( 1 + H)' + 3( 1 + H )  - In ( 1 + H )  - +, (79) 

having chosen the integration constant such that H(q5 = 0) = 0. This profile is shown 
in figure 8 ( c ) ,  and corresponds to quite far-fetched boundary conditions: like the 
preceding case, the current is flowing towards a border of the supporting plate but 
now the border is moving away from the fluid, while the fluid is being pushed towards 
it by an advancing piston (located very far from the front of the current). Both the 
border and the piston move with the same velocity c.  

In contrast to (72), the solutions (75), (76), and (79) are not represented in the 
phase plane. In general, the progressive waves do not admit a self-similar 
representation of the type (6), (lo), as they depend on two dimensional parameters, 
c and h,, with independent dimensions. When h, = 0 (and then K = 0) the governing 
parameters are reduced to one, and self-similarity of the type (6), (10) is again 
possible. 

6. Steady flows 
It is easy to show that the basic equations (2), (3) admit the time-independent 

solutions 

h = [ F ) ( x , - x ) ] ,  v = q[ ($ ) (x , - - x ) ] ,  hw = q, (80) 

with q = const., x, = const., for n = 0, and 
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for n = 1 .  These solutions describe a steady flow on a finite plate, from a constant 
source at  x = 0 to a border a t  x = xo. 

It can be easily verified that (80) is also a self-similar solution of the n = 0, 6 = $ 
family, represented by a piece of the integral curve 9’ (see figure 4) given by 
V = -$!3, which is an exact solution of (13). On the other hand, (81) does not admit a 
self-similar representation of the type (6), (10). 

The connection between the steady flows and the self-similar currents can be 
clarified observing that for a stationary solution the representation (6) is no longer 
valid and must be replaced by 

A = [x2Z([)/t]i,  v = zV([ ) / t ,  (82) 
where t is a constant governing parameter whose dimensions are T, in addition to b, 
which must have in this case the dimensions of length. One then obtains: 

[ 2 + 2 2 + 3 V = O ,  (83) 

(84) 

instead of (11)  and (12). Then a steady flow will not be self-similar, unless the 
condition S<Z’+Z = 0 is satisfied. Except for trivial solutions this happens only in 
the special case n = 0 and 6 = t ,  and is not possible if n = 1. 

We observe that the steady flows, like the progressive waves, are a special case of 
a family of solutions called limiting to  self-similar by Barenblatt (1979), and that 
they can be derived from the general formalism ( $ 2 )  by means of an appropriate 
limiting process. 

3<ZV‘+ [ 2 V +  (5 + 3n)  VZ = 0, 

7. Construction of solutions for specific problems 
In this Section we shall indicate briefly how to  derive from the formalism the 

solutions for some specific problems. A more detailed analysis of the properties of 
these solutions will be given in a forthcoming paper. 

Two steps are usually needed to find the integral curve (or curves) that represents 
the solution of a given problem: first, one must identify by inspection of the 
boundary (or initial) conditions the parameter b that determines the self-similar 
variable 6 and the exponent 6; second, one has to select the appropriate integral 
curve among the (n, 6) family (i.e. the curve whose asymptotic behaviour corresponds 
to the boundary conditions a t  hand). The solutions thus found are called ‘self-similar 
of the first kind’ (Barenblatt 1979). I n  certain instances, the boundary or initial 
conditions do not determine the parameter b, so that the self-similarity exponent 6 
must be found by other methods, as we shall show in $7.7. The solutions are then 
called ‘self-similar of the second kind’ (Barenblatt 1979). Let us discuss a few 
examples. The reader can find in tables 1 and 2 a summary of the properties of the 
singular points and of the integral curves relevant for the flows discussed in this 
section. 

7.1. Viscous gravity currents whose volume varies with time according to a power law 
This is the problem studied by Huppert (1982). These flows obey the global 

continuity equation : zdt) 

(2nx)* h(x, t )  dx = q, ta, (85) 

with q, = const. ; thus a = 0 corresponds to the spread of a constant volume of fluid, 
a = 1 to a source of constant flux a t  x = 0, etc. The supporting plate extends to 

s, 
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infinity. As stated in $ 3  these flows are represented by the segment of the curve d 
(see figures 3-5, 7) that joins the singular points A and D (for 01 = 0), or E (for 
a =I= 0). Using (4), (6), and (10) in (85) one obtains 

- 3 / ( 5 + 3 12 ) 

and Cf = [J: ($+3nZ)idy] . (87) 

All the results of Pattle (1959), Smith (1969), Nakaya (1974), Lopez et al. (1976), and 
Hupert (1982) can be recovered by means of the phase-plane formalism. In addition, 
we observe that in the case n = 0, a = t[& = 11 the solution [corresponding to the 
curve (29)] is analytic, a fact not previously noticed. It is given by 

It can be recognized that this solution is partially coincident with the progressive 
wave solution (72). 

7.2. Viscous gravity currents produced by the removal of a wall that separates two 
layers of j h i d  of different thickness 

This problem is analogous to that of the breaking of a dam for an inviscid fluid (see 
for example Whitham 1974) : a thin vertical wall located a t  x = xo separates a layer 
of fluid whose thickness is h, in the x < xo region from a layer of thickness h; in the 
region x > x,; the supporting plate extends to infinity; a t  t = 0 the wall is suddenly 
removed and a gravity flow ensues tending to restore equilibrium. 

The governing parameters of this problem are A, = (g/3v)bhO and A; = (g/3v)ihh, 
whose dimensions we (L2/T)i ,  and x ,  which has the dimensions of L. Clearly the flow 
will not be self-similar in the axisymmetric case (n  = 1). For plane symmetry 
(n  = 0), translational invariance allows the choice of xo = 0 so that in this case there 
is a self-similar solution. The similarity variable can be taken as 

5 = x/A! ti, (89) 
i.e. b = hi, 6 = 8. The solution depends on A, and on the dimensionless parameter 
7r = A;/Ao. The phase plane is represented in figure 3. Let us assume A, > A; for 
definiteness. The solution is represented by two pieces: a curve such as 9 joining E 
and 0, that represents the flow in the domain x > 0 ( =  x,), and a curve such as 98‘ 
going from E to 0 in the V < 0 half-plane that represents the flow in the domain 
z < 0. For x- t -  00 and x++ 00,  h must approach h, and h; respectively, and the 
solutions corresponding to 9 and 98’ must be joined smoothly a t  x = 0 by requiring 
the continuity of h and v. These conditions determine uniquely the pair B, B‘ and 
the integration constants. 

If h; = 0, i.e. no fluid is initially present in the x > 0 domain, the solution must 
have an advancing front at a finite distance from the origin. The appropriate integral 
curves are d,  going from E to A ,  and d’ (see figure 3) ,  where the latter is determined 
by the requirements of the continuity of h and v as above. It can be observed that 
the current in the x > 0 domain is identical to that produced by a source a t  the origin 
whose flux varies as t-i, that is, a flow of the type described in $7 .1 ,  with a = t ,  and 
qa = (gh;/3v)f. 

Now suppose that the supporting plate extends only from x = - 00 to x = 0. Then 
when the wall is removed the fluid begins to  fall over the plate border. This current 
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is represented by the curve $? that joins E and 0, and that near E is given by the 
approximate formula (45). 

We observe that these flows are characterized by a vertical scale h, constant in 
time, so that the only change of the profile of the current as time elapses is an 
horizontal stretching proportional to 8. 

7.3. Drainage of a viscous Jluid from a finite supporting plate 
Let us assume that a certain quantity of fluid is initially contained between two 
vertical walls located at x = x, and x = xi ,  respectively, and that the supporting 
plate does not extend beyond the walls. At t = 0 one of the walls (that a t  x,, say), or 
both, are suddenly removed, so that the fluid falls over the plate border, or borders. 
We are interested only in the last stages of the flow, when most of the fluid has 
already drained and the average depth of the fluid is much less than the initial one. 
Clearly, in this case the initial depth of the fluid is not relevant so that the only 
governing parameters are x, and xh, whose dimensions are L.  The flow is then self- 
similar (both for the plane and the axisymmetric case) and 6 = 0. This is a very 
special case of self-similarity, as 5 depends only on x, so that h and w depend on time 
only through the (x’/lt): and ( x / t )  scales of (6). Let us discuss the axisymmetric case 
(n = 1 ) ;  the phase plane is shown in figure 6. The flows we are considering are 
represented by integral curves such as 9, E ,  8’ and H. The curve 9, joining D and C, 
represents the drainage of a fluid supported by a circular plate (x ,  = radius of the 
plate, xh = 0). The curve 8, from the point I[Z = Z, ,  V = 01 to C represents the 
drainage of an annular plate when the external wall (at x = 2,) is removed but the 
inner wall (at x = xh) is retained. We mention here that, when 6 = 0, the portion of 
any trajectory ending on the line V = 0, as in the present case, represents a flow with 
a wall a t  the corresponding point (x,). The curve &”, from C to I ,  describes the 
drainage of a circular tank whose radius is x i  through a hole of radius xo at its centre. 
Taking the curves &‘ and E‘ together as a single piece one can construct the solution 
corresponding to the drainage of an annular plate when the fluid is allowed to spill 
over both the inner and the outer border. Finally, the curve H describes the current 
due to a source at the origin, whose flux varies with time as t-b, over a circular plate 
of radius xo. Analogous solutions for the n = 0 case can be found in a similar way. 

7.4. Dipole-type solutions 
By analogy with the case of constant volume, obtained as a particular solution in 
57.1, one can seek solutions which preserve certain integral moments of h during the 
spreading of the flow : 

(90) 
x d t )  

( 2 . n ~ ) ~  x”h(z, t )  dx = const., .I=J0 
where v is an arbitrary constant. Using (4), (6), and (10) in (90) one finds 

6 = 1/(5 + 3n + 3v), (91) 

and 

We mention in passing that condition (90) is completely equivalent to (85) ,  the 
exponents a and v being related by 

a = -u/(5+3n+3v) = -6 / v .  (93) 
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For plane symmetry, the condition of constancy of the first moment (v = l),  requires 
6 = and, according to (92), corresponds to a sink in the origin whose flux varies as 
t-i while a front moves away. For this value of 6 the integral curve leaving A (which 
represents the moving front), must join E (which represents a sink a t  the origin) (see 
tables 1 and 2). This trajectory is analytic and is given by 

where r,~ = [/&, and b and 5, are constants. We observe that as the integral curve (93) 
crosses the V = 0 axis, there is a (moving) point in the current (at 7 = 7, = ($) that 
separates the region in which the liquid flows towards the sink (0 < 7 < 7,) from that 
in which the liquid flows towards front (7, < 7 < 1). The height h of the current is a 
maximum a t  7 = 7,. As this solution conserves the first-order moment (go), it can be 
called of the dipole type, in analogy with the solutions obtained by Barenblatt (1954) 
and Barenblatt & Zel'Dovich (1957) in the context of the porous media equation, see 
also Zel'dovich & Raizer (1967) for solutions of this type in relation with nonlinear 
heat diffusion. 

7.5. Currents produced by a source at the origin 
This is a problem of the same type as that discussed in $7.1 ,  only slightly more 
general. Let us assume that the flux f = (3u/g)i f  of the source depends on time 
according to the power law 

f =  lim ( 2 ~ x ) ~ A v  = QBtP, (97) 
x - t o  

where /3 is some constant. The dimensions of the governing parameter Q are 

(98) [Q] = ,5(5+3n)/3T-(4+3P)/3 

so that (99) 

If the boundary conditions do not introduce other dimensional parameters in 
addition to Q, the problem is identical with that of $7.1 for a = /3+ 1 and q, = (3v /g ) i  
(p+ 1)-l Q .  But if an additional governing parameter enters into the problem other 
solutions can be found. In  general, these will not be self-similar. However, when the 
dimensions of the additional parameter and of Q are mutually dependent, as may 
happen for some special values of /3, one still obtains self-similarity. Let us consider 
some interesting examples. 

It is easy to check that when p = t (n-  1)  the dimensions of A and of Q are 
dependent so that problems involving an additional parameter A, are self-similar. 
Cases of this type occur if one considers the flow from a source into a pool of liquid 
having initially a uniform depth h,. 

Let us consider first the axisymmetric case. Then /3 = 0, i.e. the source has a 
constant flux, and 6 = t. The current is represented in the phase plane by the curve 
$9 joining E and 0 (see figure 7), which corresponds to a solution having the correct 
asymptotic properties as can be easily checked. 

The analogous solution in the plane case corresponds to /3 = -t and 6 = a. It is 
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represented by the integral curve 99 (figure 3)  already discussed in 97.2 in connection 
with the current produced by the removal of a wall separating two pools of liquid 
having different depths. 

Other examples of self-similar flows obtained when the dimensions of two or more 
governing parameters are mutually dependent can be devised, but will not be 
discussed here for the sake of brevity. 

7.6. Viscous gravity currents having a fixed front 
Various solutions of this type appear in the formalism, as mentioned in 93, where we 
remarked that they are meaningful for t < 0. Summarizing, one has: 

(a) The flow given by (35)  and (36) )  which are exact solutions of the governing 
equations (2) and (3) .  This flow is represented in the phase plane by the point B (that 
can be regarded as a singular integral curve), irrespective of the values of n and 8, 
which do not appear in the solutions (35) ,  (36). It can be observed that for this 
particular flow A and v do not depend on any dimensional parameter (besides v/g, 
only numerical constants enter in (35) ,  (36)) .  The profile of this flow varies as xf and 
the thickness a t  a fixed position increases infinitely with time as ( -t)-i for - t + 0. 
The flow velocity is zero at the front a t  any fixed time and increases linearly with x, 
while for fixed x, it increases as (-t)-’, being directed towards the front. The 
equation of motion of a parcel of the fluid that is moving with the average velocity 
is given by 

> (100) 11: = K( - t)1/(5+3n) 

so that a t  t = 0 all such parcels collapse at the front, where the thickness becomes 
infinite. This behaviour corresponds to the so-called ‘waiting time ’ solutions that all 
nonlinear diffusion equations like ( 5 )  possess (see Lacey et aZ. 1982). Physically the 
fluid has a front that, under appropriate conditions and without any wall stopping 
it, waits a finite amount of time for the rest of the fluid to reaccommodate before 
spreading. 

( 6 )  For 6 = 0 the integral curve 9 (see figures 2 and 6 )  arrives a t  0. It is given for 
n = 0 by (24) which is an exact solution of (13). The corresponding flow coincides 
with that discussed in (a ) ,  except for a translation. For n = 1 ,  (24) represents the 
asymptotic behaviour near 0 of 9, there being no analytic solution of (13) in this 
case. The asymptotic behaviour of h and v is 

.]i 1 [ 1:t 5t 
h =  --(x-zo) , v=-((x-xo) ,  

and represents a current with a fixed front a t  x = xo. 
( c )  For any n, and 6 > So, the singular point B represents the origin of coordinates. 

For the integral curves leaving B, the asymptotic behaviour of h and v near the origin 
is given by (35) and (36). As in the case ( a )  above, these solutions represent currents 
with stationary fronts a t  the origin. The difference between the present case and (a )  
is that now the boundary conditions elsewhere involve a dimensional parameter b so 
that S is no longer undetermined (in addition these boundary conditions single out 
which of the infinite integral curves leaving B must be chosen). The boundary 
conditions influence the flow far from the origin, so that the stationarity of the front 
is not sufficient to determine the behaviour of the current a t  large distances. 

( d )  As was mentioned a t  the end of $3,  when 8, < S < So there is a limit cycle 
surrounding B. As the limit cycle is approached (<+ 0) the phase variables 2 and V 
become oscillatory functions of < although it can be easily proved that the physical 
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variables h, v are monotonic functions of x for any t .  Then, according to (6), the limit 
cycle itself represents a stationary front and trajectories emerging from it represent 
waiting-type solutions. 

From that discussed in points ( c )  and ( d )  above, solutions of the waiting type can 
be constructed for any 6 greater than 6,. These kinds of solutions have been 
extensively studied in the literature in the context of nonlinear diffusion equations 
(see, for instance, Lacey et al. 1982; Kath & Cohen 1982; Smyth & Hill 1988), and 
represent by themselves a vast area of research. The problem of finding the 
appropriate continuation of the waiting time solutions for t > 0, when the front 
begins to move, has been studied by Lacey et al. (1982). For the sake of brevity we 
shall not discuss these solutions further, and refer the interested reader to the above- 
mentioned literature. 

7.7. Collapse of an  axisymmetric converging current : a case of self-similarity of the 
second kind 

Let us imagine the axisymmetric flow of a viscous fluid towards the origin as might 
occur, for example, if we have initially a pool of fluid outside a circular wall, while 
inside the wall there is no liquid, and the wall is suddenly removed, letting the liquid 
run towards the centre. The flow will have a convergent front, whose radius reduces 
as the fluid spreads, and that will finally collapse at  the origin. Let us consider the 
last stages of the process, near the collapse of the front. We shall be interested in the 
properties of the flow for small radii, compared with any constant parameter 
characteristic of the initial conditions, say, for instance, the radius of the circular 
wall containing initially the fluid. In this situation we are left with no constant 
governing characteristic parameters : those arising from the initial conditions are no 
longer suitable as a scale of the region of interest, and the characteristic parameters 
of the flow therein are functions of time. Consequently the flow will still be self- 
similar, but the similarity exponent 6 cannot be determined by dimensional 
considerations. This is then a case of self-similarity of the second kind (see Barenblatt 
& Zel’dovich 1972 and also Barenblatt 1979). 

As the current has an advancing front, the solution must be represented by a 
trajectory leaving the singular point A .  Also, we are interested in what happens 
before the front collapses, i.e. for t < 0, the collapse corresponding to t = 0. 
This means that the integral curve of interest must lie in the 2 < 0 half-plane. For 
Z < 0, the single trajectory leaving A can go either to B, 0 or C; a curve joining A with 
B (or A with C) represents a flow that blows up (or fades away) as t approaches 0 a t  
points a t  a finite distance from the origin ; then, it cannot represent the solution we 
are looking for. The actual flow must then be represented by a trajectory, or a portion 
of it,  joining A and 0, which has the required property of describing a flow with h, 
v finite and non-zero for t --f 0 a t  any finite distance behind the front. Such a curve 
exists only for a particular value of 6, which we shall call 6, (see figure 9). By 
numerical evaluation one finds 6, = 0.762.. . . The solution is then given, near the 
front, by 

(1-q)+ . . .  , 1 
(1-7))+ ... , 1 .=-*q[l+y 

t 
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FIGURE 9. The eigenvalue problem for the axially converging front current. For t < 0, A and 0 
are saddle points. An integral curve joining A with 0 can be found only for 8 = 8,. ( a )  S < 8,; 
( b )  S > 8,; (c) 8 = 8,. 

where 7 = z/x,, and xf = K( - t )0.762..  . . It can be seen that as t + 0, the front speeds up, 
its velocity tending to infinity a t  the instant of the collapse. 

Thus we have seen that in the present case the self-similarity exponent S, is 
determined by solving a nonlinear eigenvalue problem (and not by dimensional 
analysis alone, as is the case of self-similar solutions of the first kind). This is typical 
of self-similar problems of the second kind. 

It can also be noticed that the present problem is strongly reminiscent of that of 
the collapse of cylindrical and spherical shock waves in gas dynamics that leads to 
the classical solutions of Guderley (1942), see for example Zel’dovich & Raizer (1967). 
The complete discussion of this type of solution and the analogous ones that can be 
expected in the related problems of nonlinear diffusion, nonlinear heat conduction, 
etc. are left for future work. 

8. Summary and conclusions 
The phase-plane formalism we have developed for viscous gravity flows described 

by the lubrication theory approximation is based on the analogous formalisms of 
Sedov (1959) and of Courant & Friedrichs (1948) for gas dynamics. It allows the 
systematic derivation of the similarity solutions represented by scales that depend 
on the spatial and temporal variables according to power laws of the type (6) and 
(10). The solutions are represented by integral curves in the plane of the phase 
variables Z and V ,  which are related to the depth and the average horizontal velocity 
of the fluid. Each integral curve corresponds to a certain self-similar gravity current 
satisfying a particular set of initial and boundary conditions. 

All conceivable boundary and initial conditions (compatible with self-similarity of 
the type considered) are represented in the phase plane, so that the present theory 
is complete in the sense that it contains all the self-similar currents described by the 
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governing equations. A detailed analysis of the properties of the integral curves in 
the neighbourhood of the singular points of the phase plane has been carried out, and 
the asymptotic formulae describing the behaviour of the physical quantities are 
given. This allows the determination of the appropriate solution for specific 
problems. We have illustrated by means of various examples how to derive from the 
formalism the desired self-similar solutions. The examples discussed include, in 
addition to the similarity flows studied by other authors, novel self-similar solutions 
of the first kind such as the extension to viscous flows of the classic problem of the 
breaking of a dam, flows on finite plates, and several others, and self-similar flows of 
the second kind, such as the collapse of an axisymmetric converging current. Some 
interesting analytic solutions have been found in various cases. 

An investigation of solutions of other types, such as progressive waves and steady 
flows has been included owing to their close connection to self-similar flows. 

With slight modifications, the phase-plane formalism of the present paper can be 
employed to investigate the analogous self-similar solutions for other physical 
processes governed by nonlinear parabolic equations, such as nonlinear heat 
conduction, nonlinear diffusion, motion of ground water, etc. 

The detailed study of some of the solutions we have found, including in certain 
cases the analysis of their stability, is left for a forthcoming paper. 
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